
Efficient Policy-Based Routing
without Virtual Circuits ∗

Bradley R. Smith and JJ Garcia-Luna-Aceves
brad@soe.ucsc.edu, jj@soe.ucsc.edu

Computer Engineering Department, Jack Baskin School of Engineering
University of California, Santa Cruz, CA 95064

Abstract

The inclusion of multiple metrics in a routing computa-
tion is called policy-based routing. Previous work on solu-
tions to this problem have focused on virtual-circuit-based
solutions, and have resulted in computationally expensive
algorithms. This paper presents a number of advances in
the provision of policy-based routing services in networks
and internetworks. An integrated policy-based routing ar-
chitecture is formulated where the general problem is de-
composed into a traffic engineering problem of computing
routes in the context of administrative traffic constraints,
and a quality-of-service (QoS) problem of computing routes
in the context of performance-related path constraints. A
family of routing algorithms are presented for computing
routes in the context of these constraints which achieve new
levels of computational efficiency. Lastly, a forwarding ar-
chitecture is presented that efficiently supports hop-by-hop
forwarding in the context of multiple paths to each destina-
tion, which is required for policy-based routing.

1. Introduction

The architecture of today’s Internet is based on the
catenet model for internetworking [5, 6, 7]. The two basic
components of a catenet are networks and gateways, where
a catenet is formed by the interconnecting of networks with
gateways. A primary goal of the catenet model, and there-
fore the Internet architecture, was to encourage the develop-
ment and integration of new networking technologies into
the developing catenets. To achieve this goal, only mini-
mal assumptions were made of networks and the routing
computation by the catenet model. Networks were assumed
to support the attachment of a number of computers, trans-
port datagrams, allow switched access so that attached com-

∗ This work was supported in part by the Defense Advanced Research
Projects Agency (DARPA) under Grant N66001-00-8942.

puters could “quickly” send datagrams to different destina-
tions, and provide best-effort delivery, where the definition
of best-effort allowed datagrams to be dropped or delivered
out of order. The routing computation was assumed to sup-
port a single forwarding class chosen by the optimization of
a single, typically delay-related metric.

This best-effort model of communication has proven sur-
prisingly powerful. Indeed, much of the success of the In-
ternet architecture can be attributed to this inspired de-
sign decision. However, largely as a product of its own
success, limitations of the Internet architecture are being
encountered as it is applied to ever more demanding ap-
plications [3]. Real-time applications, such as on-demand
streaming, audio and video conferencing, visualization, and
virtual reality require varying degrees of bandwidth, delay,
and delay jitter commitments from the network infrastruc-
ture, which render shortest-path routing insufficient and call
for the generalization of the basic routing model of the In-
ternet to satisfy constraints on multiple metrics.

Supporting the efficient management of network re-
sources, traffic engineering [2] and network manage-
ment services require the ability to control the allocation
of these resources among network flows in an inter-
net. The original motivation for traffic engineering was
the need by IP network providers of the ability to man-
age network bandwidth in the context of the single-path
routing model of IP networks [19]. Lacking such capabil-
ities, the tendency of single-path routing is to aggregate
traffic for a given destination onto a subset of the pos-
sible paths to that destination. As a result, networks
frequently experience congestion in spite of the availabil-
ity of excess capacity for the offered load.

The vulnerability of IP services to basic network disclo-
sure and denial of service threats is another result of the lack
of traffic engineering capabilities from current IP mecha-
nisms. Excluding computationally expensive firewall mech-
anisms, IP traffic can potentially traverse any link in an in-
ternet. Therefore, the disclosure of any traffic stream and
the denial-of-service attack of any destination in an internet

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Efficient Policy-Based Routing without Virtual Circuits

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

are unavoidable threats. Fundamental to these new require-
ments is the ability to control the topology used to forward
traffic.

The metrics used in routing computations are assigned
to individual links in the network. For a given routing appli-
cation, a set of link metrics is identified for use in comput-
ing the path metrics used in the routing decision. Link met-
rics can be assigned to one of two classes based on how they
are combined into path metrics. Concave (or minmax) met-
rics are link metrics for which the minimum (or maximum)
value (called the bottleneck value) of a set of link metrics
defines the path metric of a path composed of the given
set of links. Examples of concave metrics include residual
bandwidth, residual buffer space, and administrative traffic
constraints. Additive metrics are link metrics for which the
sum (or product, which can be converted to a sum of loga-
rithms) of a set of link metrics defines the path metric of the
path composed of the given set of links. Examples of ad-
ditive metrics include delay, delay jitter, cost, and reliabil-
ity.

While, in general, routing with multiple constraints is
an NP-complete problem [12, 13], there are many sub-
classes of this general problem that have been shown to have
polynomial-time solutions. For example, any problem in-
volving two metrics with at least one of them being concave
can be solved in polynomial-time by a traditional short-
est path algorithm on the graph in which all links that do
not comply with the concave constraints have been pruned
[9, 14, 20]. However, even for this case, as the number of
constraints becomes exponential in the size of the graph,
this result no longer holds.

The foundational work on the problem of computing
routes in the context of more than one additive metric was
done by Jaffe [13], who defined the multiply-constrained
path problem (MCP) as the computation of routes in the
context of two additive metrics. He presented an enhanced
distributed Bellman-Ford algorithm that solved this prob-
lem with time complexity of O(n4b log(nb)), where b is the
largest possible metric value.

Since Jaffe, a number of solutions have been pro-
posed for computing exact routes in the context of mul-
tiple metrics for special situations. Wang and Crowcroft
[20] were the first to present the solution to comput-
ing routes in the context of a concave and an additive metric
discussed above. Ma and Steenkist [15] presented a modi-
fied Bellman-Ford algorithm that computes paths satisfying
delay, delay-jitter, and buffer space constraints in the con-
text of weighted-fair-queuing scheduling algorithms in
polynomial time. Cavendish and Gerla [4] presented a mod-
ified Bellman-Ford algorithm with complexity of O(n3)
which computes multi-constrained paths if all met-
rics of paths in an internet are either non-decreasing or
non-increasing as a function of the hop count.

Recent work by Siachalou and Georgiadis [17]
on MCP has resulted in an algorithm with complex-
ity O(nW log(n)) (in terms defined in Section 3). This
algorithm is similar to the QoS algorithm presented in Sec-
tion 4 in that it is an enhanced version of the Dijkstra
algorithm based on invariants similar to those underly-
ing the algorithms presented in Sections 3 and 4. How-
ever, due to errors in the algorithm (not discussed further
here due to space constraints), it does not compute cor-
rect results.

Several other algorithms have been proposed for com-
puting approximate solutions to the QoS routing problem.
Both Jaffe [13] and Chen and Nahrstedt [9] propose algo-
rithms which map a subset of the metrics comprising a link
weight to a reduced range, and show that using such solu-
tions the cost of a policy-based path computation can be
controlled at the expense of the accuracy of the selected
routes. Similarly, a number of researchers [13, 16] have pre-
sented algorithms which compute routes based on a func-
tion of the multiple metrics comprising a link weight. These
approximation solutions do not work with administrative
traffic constraints.

In this paper, the inclusion of multiple metrics in a
routing computation is called policy-based routing [9, 20].
Policy-based routing supports traffic engineering by the
computation of routes in the context of administrative con-
straints on the type of traffic allowed over portions of an in-
ternet. Analogously, policy-based routing supports quality-
of-service (QoS) by the computation of routes in the con-
text of performance-related constraints on the paths specific
traffic flows are allowed to use. The drawbacks of the cur-
rent policy-based routing solutions are that they have poor
average case performance, they implement inflexible rout-
ing models, and solutions for computing approximate solu-
tions do not work with the traffic constraints used for traffic
engineering. The contributions of this paper are:

• The first unifying approach to the support of rout-
ing with traffic engineering and quality-of-service con-
straints.

• A family of efficient algorithms for computing
routes in the context of traffic-engineering con-
straints, quality-of-service constraints, and a combina-
tion of the two, which achieve new levels of computa-
tional efficiency.

• A forwarding architecture that efficiently supports
hop-by-hop forwarding in the context of multi-
ple paths to each destination.

Sections 2, 3, and 4 present the model and algorithms for
computing optimal routes in the context of policy-based link
metrics. The algorithms are shown to be correct and highly
efficient.

The routing model used by the Internet architecture is
a table-driven, hop-by-hop routing model. In this model,
routers learn about the state of connectivity in an internet by
exchanging messages with each other, and run local routing
computations whose output is a forwarding table. This for-
warding table is used by the router’s forwarding process to
make per-packet forwarding decisions.

In contrast, many recent policy-based routing propos-
als have used an on-demand, source-driven, virtual-circuit-
based routing model where routes are computed on receipt
of the first packet of a flow, and forwarding is source driven
through the use of either path setup or source-routing tech-
niques. There are several weaknesses to this model com-
pared to the table-driven, incremental model. First, changes
in network state must be propagated to the source, and
topology change requests propagated back into the network
to adapt to changes in an internet. Second, the model im-
plements centralized routing control where forwarding state
for all sources at a given point in the network is maintained
by the router acting for those sources. Lastly, information
about a link must be propagated to all routers in an inter-
net. As a result, in these proposals, routing is implemented
as a centralized routing computation, with remote control of
forwarding state, which is less efficient, responsive, and ro-
bust than table-driven, hop-by-hop solutions.

Section 5 presents a new forwarding architecture that ef-
ficiently supports hop-by-hop forwarding in the context of
policy-based routing with multiple paths to each destina-
tion. It should be noted that, while the new algorithms for
policy-based routing presented in this paper are applicable
to any routing model, a primary goal of their design has
been that they be compatible with a table-driven, hop-by-
hop model.

2. A Model for Policy-Based Routing

A network is modeled as a weighted undirected graph
G = (N, E), where N and E are the node and edge sets,
respectively. By convention, the size of these sets are given
by n = |N | and m = |E |. Elements of E are unordered
pairs of distinct nodes in N . A(i) is the set of edges ad-
jacent to i in the graph. Each link (i, j) ∈ E is assigned
a weight, denoted by ωij . A path is a sequence of nodes
< x1, x2, . . . , xd > such that (xi, xi+1) ∈ E for every
i = 1, 2, . . . , d − 1, and all nodes in the path are distinct.
The weight of a path is given by ωp =

∑d−1
i=1 ωxixi+1

. The
nature of these weights, and the functions used to combine
these link weights into path weights are specified for each
algorithm.

In the following, we propose a declarative traffic engi-
neering model where network links are labeled with state-
ments declaring what the desired routing policies are in the
form of constraints of the traffic allowed on each link. These

constraints take the form of link expressions in a boolean
traffic algebra which describe the traffic allowed on a link.
New, efficient policy-based routing algorithms then com-
pute a minimal set of routes, composed of a path expression
and a next hop, for each destination in an internet. These al-
gorithms, in effect, discover the optimal set of forwarding
classes needed at a given source in the internet to imple-
ment the desired policies. These path expressions are then
installed in the appropriate traffic classifiers.

The traffic algebra is a boolean algebra used to define
traffic classes in a flexible and efficient way. Specifically,
it is composed of the standard boolean operations on the
set {0, 1}, where p primitive propositions (variables) are
true/false statements describing characteristics of network
traffic. The syntax for expressions in the algebra is speci-
fied by the BNF grammar:

ϕ ::= 0 | 1 | v1 . . . vp | (¬ϕ) | (ϕ ∧ ϕ) |

(ϕ ∨ ϕ) | (ϕ → ϕ)

The set of primitive propositions, indicated by vi in the
grammar, can be defined in terms of any globally signifi-
cant attributes of the ingress router’s state that can be ex-
pressed as a true/false statement. Link expressions identify
the traffic classes allowed to traverse the link, and are de-
noted by εij in the algorithms. Path expressions, denoted by
εp in the algorithms, and defined as εp = εx1x2

∧ εx2x3
∧

. . .∧εxd−1xd
, specify the set of traffic classes allowed to tra-

verse the path. There is a maximum of 2p unique sets of traf-
fic classes.

The SAT (ϕ) primitive of the traffic algebra is the SAT-
ISFIABILITY problem of traditional Boolean algebra. Sat-
isfiability must be tested in two situations by the algorithms
presented below that implement traffic-engineering compu-
tations. First, an extension to a known route should only be
considered if classes of traffic exist that are authorized to
use both the path represented by the known route and the
link used to extend the path (at line 15 in Figure 2). This
is true iff the conjunction of these expressions is satisfiable
(i.e. SAT (εi ∧ εij)). Second, given that classes of traffic
exist that are authorized to use a path represented by a new
route, the algorithms must determine whether all traffic sup-
ported by that route has also been satisfied by other, known
shorter routes (not shown in the algorithms presented in this
paper). This is true iff the new route’s traffic expression im-
plies the disjunction of the traffic expressions for all known
better routes (i.e. (εi → εi1 , εi2 , ..) is valid, which is de-
noted by (εi → Ei) in the algorithms). Determining if an
expression is valid is equivalent to determining if the nega-
tion of the expression is unsatisfiable. Therefore expressions
of the form ε1 → ε2 are equivalent to ¬SAT (¬(ε1 → ε2))
(or ¬SAT (ε1 ∧ ¬ε2)).

The satisfiability decision performed by SAT (ε) is the
prototypical NP-complete problem [12]. As is typical with

NP-complete problems, it has many restricted versions that
are computable in polynomial time. An analysis of strate-
gies for defining computationally tractable traffic algebras
is beyond the scope of this paper, however we have imple-
mented an efficient, restricted solution to the SAT problem
by implementing the traffic algebra as a set algebra with the
set operations of intersection, union, and complement on the
set of all possible forwarding classes.

The routing algorithms presented here are based on an
enhanced version of the path algebra defined by Sobrinho
[18], which supports the computation of a set of routes for a
given destination containing the “best” set of routes for each
destination. Formally, the path algebra P = <W ,⊕,�,v
, 0,∞> is defined as a set of weights W , with a binary op-
erator ⊕, and two order relations, � and v, defined on W .
There are two distinguished weights in W , 0 and ∞, rep-
resenting the least and absorptive elements of W , respec-
tively. ⊕ is the original path composition operator, and �
is the original total ordering from [18]. ⊕ is used to com-
pute path weights from link weights. � is used by the rout-
ing algorithm to build the forwarding set, starting with the
minimal element, and by the forwarding process to select
the minimal element of the forwarding set whose parame-
ters satisfy a given QoS request.

A new relation on routes, v, is added to the algebra and
used to define classes of comparable routes and select max-
imal elements of these classes for inclusion in the set of for-
warding entries for a given destination. v is a partial order-
ing (reflexive, anti-symmetric, and transitive) with the fol-
lowing, additional property:

Property 1 (ωx v ωy) ⇒ (ωx � ωy).

A route rm is a maximal element of a set R of routes in a
graph if the only element r ∈ R where rm v r is rm it-
self. A set Rm of routes is a maximal subset of R if, for all
r ∈ R either r /∈ Rm, or r ∈ Rm and for all s ∈ R − {r},
r v/ s. The maximum size of a maximal subset of routes is
the smallest range of the components of the weights (for the
two component weights considered here). An example path
algebra based on weights composed of delay and cost is as
follows:

ωi ≡ (di, ci)

0 ≡ (0, 0)

∞ ≡ (∞,∞)

ωi ⊕ ωj ≡ (di + dj , ci + cj)

ωi � ωj ≡ (di < dj) ∨ ((di = dj) ∧ (ci ≤ cj))

ωi v ωj ≡ (dj ≤ di) ∧ (cj ≤ ci)

3. Basic Policy-Based Routing Algorithms

The notation used in the algorithms presented in this
paper is summarized in Table 1. In addition, the maxi-

P ≡ Queue of permanent routes to all nodes.
Pn ≡ Queue of permanent routes to node n.
T ≡ Heap of temporary routes.
Tn ≡ Entry in T for node n.
Bn ≡ Balanced tree of routes for node n.
En ≡ Summary of traffic expression for all routes

in Pn.

Table 1. Notation.

Notation Description
Queue

Push(r,Q) Insert record r at tail of queue Q (O(1))
Head(Q) Return record at head of queue Q (O(1))
Pop(Q) Delete record at head of queue Q (O(1))

PopTail(Q) Delete record at tail of queue Q (O(1))
d-Heap

Insert(r,H) Insert record r in heap H (O(logd(n)))
IncreaseKey(r, rh) Replace record rh in heap with record r hav-

ing greater key value (O(d logd(n)))
DecreaseKey(r, rh) Replace record rh in heap with record r hav-

ing lesser key value (O(logd(n)))
Min(H) Return record in heap H with smallest key

value (O(1))
DeleteMin(H) Delete record in heap H with smallest key

value (O(d logd(n)))
Delete(rh) Delete record rh from heap (O(d logd(n)))

Balanced Tree
Insert(r,B) Insert record r in tree B (O(log(n)))

Min(B) Return record in tree B with smallest key
value (O(log(n)))

DeleteMin(B) Delete record in tree B with smallest key
value (O(log(n)))

Table 2. Operations on Data Structures [1].

mum number of unique truth assignments is denoted by
A = 2p, the maximum number of unique weights by
W = min(range of weight components), and the max-
imum number of adjacent neighbors by amax = max{|
A(i) | | i ∈ N}. Table 2 defines the primitive operations
for queues, heaps, and balanced trees used in the algorithms,
and gives their time complexity used in the complexity anal-
ysis of the algorithms.

The algorithms presented in this section are based on the
data structure model shown in Figure 1. In this structure, a

T

H
e
a
p

B Pii
Balanced Tree Queue

Figure 1. Basic Data Structures

algorithm Policy-Based-Dijkstra
begin

1 Push(<s, s, 0, 1>, Ps);
2 for each {(s, j) ∈ A(s)}
3 Insert(<j, s, ωsj , εsj >, T);
4 while (|T |= 0)

begin
5 <i, pi, ωi, εi >← Min(T);
6 DeleteMin(Bi);
7 if (|Bi |= 0)
8 then DeleteMin(T)
9 else IncreaseKey(Min(Bi), Ti);
10 εtmp ← εi; ptr ← Tail(Pi);
11 while ((εtmp 6= 0) ∧ (ptr 6= ∅))
12 εtmp ← εtmp ∧ ¬ptr.ε; ptr ← ptr.next;
13 if (εtmp 6= 0)

then begin
14 Push(<i, pi, ωi, εi >, Pi);
15 for each {(i, j) ∈ A(i) | SAT (εi ∧ εij)}

begin
16 ωj ← ωi ⊕ ωij ; εj ← εij ;
17 if (Tj = ∅)
18 then Insert(<j, i, ωj , εj >, T)
19 else if (ωj ≺ Tj .ω)
20 then DecreaseKey(<j,i, ωj , εj >, T);
21 Insert(<j, i, ωj , εj >, Bj);

end
end

end
end

Figure 2. General-Policy-Based Dijkstra.

balanced tree (Bi) is maintained for each node in the graph
to hold newly discovered, temporary labeled routes for that
node. The heap T contains the lightest weight entry from
each non-empty Bi (for a maximum of n entries). Lastly, a
queue, Pi, is maintained for each node which contains the
set of permanently labeled routes discovered by the algo-
rithm, in the order in which they are discovered (which will
be in increasing weight). The general flow of these algo-
rithms will be to take the minimum entry from the heap T ,
compare it with existing routes in the appropriate Pi, if it is
incomparable with existing routes in Pi it is pushed onto Pi,
and “relaxed” routes for its neighbors are added to the ap-
propriate Bx’s.

The correctness of these algorithms is based on the main-
tenance of the following three invariants: for all routes
I ∈ P and J ∈ B∗, I � J , all routes to a given
destination i in P are incomparable for some set of satisfy-
ing truth assignments, and the maximal subset of routes to a
given destination in P ∪ B∗ represents the maximal subset
of all paths to j using nodes with routes in P . Furthermore,
these invariants are maintained by the following two con-
straints on actions performed in each iteration of these algo-
rithms: (1) only known-non-maximal routes are deleted or
discarded, and (2) only the smallest known-maximal route
is moved to P .

Figure 2 presents a modified Dijkstra algorithm that

computes an optimal set of routes to each destination sub-
ject to multiple general (additive or concave) path met-
rics, in the presence of traffic constraints on the links.
The time complexity of Policy-Based-Dijkstra is dominated
by the loops at lines 4, 11, and 15. The loop at line 4
is executed nWA times, and the loop at line 15 mWA
times. The loop at line 11 scans the entries in Pi to ver-
ify a new route is best for some truth assignment. For
a given destination, this loop is executed at most an in-
crementally increasing number of times, starting at 0 and
growing to WA − 1 (the maximum number of unique
routes to a given destination) for a total of

∑WA−1
i=1 i =

(WA−1)WA

2 times. For completeness, the statements at lines
6 and 21 take time proportional to log(amaxWA) for a to-
tal of nWA log(amaxWA) and mWA log(amaxWA), re-
spectively; and those in lines 7–9 and 17–20 proportional
to logd(n) for a total of nWA logd(n) and mWA logd(n),
respectively. Therefore, the worst case time complexity of
Policy-Based-Dijkstra, dominated by the loop at line 11, is
O(nW 2A2).

The loop at line 11, which dominates the cost of Policy-
Based-Dijkstra, is required because there is no way to sum-
marize the permanent routes for a destination. However,
for the traffic engineering and QoS variants of this algo-
rithm (not shown here due to space constraints), the per-
manent routes can be summarized by a summary traffic
expression (formed by the disjunction of permanent route
path expressions) and the weight of the last route, respec-
tively. Using these shortcuts, the complexity of the traf-
fic engineering and QoS algorithms are O(mA log(A)) and
O(mW log(W)), respectively.

4. Enhanced Algorithms

The log(A) and log(W) factors in the complexity of the
traffic engineering and QoS variants of the Policy-Based-
Dijkstra algorithm (respectively) are the result of the use of
a balanced tree for storing the temporarily labeled nodes for
a given destination. This section presents enhanced versions
of these algorithms which use a queue-based data structure
for this purpose, reducing the cost of managing these struc-
tures to a lower order term in the time complexity. As a re-
sult the runtime cost of the enhanced algorithms becomes
dominated by logd(n) factors from the manipulation of the
T heap.

This enhancement is based on the property that routes
to a given node with the same predecessor are discovered
in strictly increasing (or non-decreasing, depending on the
algorithm) order. This property is a result of the fact that
routes to a given predecessor will be discovered in strictly
increasing (non-decreasing) order, and therefore the order
of discovery of routes from a given predecessor to one of its
neighbors will have the same property.

Queue

H
e
a
p

T

iP
iH

p
a
e
H

Queue

Qk
i

Queue

Figure 3. Enhanced Data Structures

Based on this insight, the data structure shown in Fig-
ure 3 can be used to improve the performance of the algo-
rithms presented in Section 3. In this data structure the bal-
anced trees for each node are replaced with a set of queues
for each neighbor of the node, and a summary heap con-
taining the head of each neighbor queue. Exploiting the or-
dering property of these queues, the algorithms ensure that
each node head Hi, and therefore Ti, contain the lightest
route in the link queues that is not subsumed by the routes
in Pi. Due to space constraints, only the QoS version of
these algorithms is presented here.

Figure 11 presents the enhanced version of the TD-QoS-
Dijkstra algorithm. Similar to the basic algorithms, the cor-
rectness of these algorithms is based on the invariants and
constraints presented in Section 3. Specifically, as detailed
in the comments from that section, constraints 1 and 2 are
maintained by the DeleteTMin() and AddCandidate() func-
tions, and, based on this, the Dijkstra iteration over the nth

best route in the main body of the algorithm maintains the
invariants.

The runtime complexity of the TD-QoS-Dijkstra algo-
rithm is dominated by the loops at lines 6 and 10. The loop
at line 6 is executed at most once for each incomparable
path to each node in the graph for a total of nW times. The
loop at line 10 is executed at most once for each distinct in-
stance of an edge in the graph, for a total of mW times. The
most costly operation in the loop at line 6 is the DeleteT-
Min() call at line 9. In the DeleteTMin() routine, the loop
at line 7 will be executed, in total, at most once per neigh-
bor for each forwarding class for a total of amaxW , and the
cost per call of the heap operations at lines 13 and 14 is
d logD(n). Therefore, the total worst-case cost of the call at
line 8 of the main algorithm is nW logd(n) + amaxW . In
the AddCandidate() routine, the runtime complexity is dom-
inated by the heap operations at lines 5, 20, and 23, which
cost logd(n) each, for a total cost of the call to AddCan-
didate() at line 12 of the main algorithm of mW logd(n).
Therefore, the worst-case time complexity of the enhanced
TD-QoS-Dijkstra algorithm is O(mW log(n)).

Figures 4 and 5 present the results of experiments run us-
ing the TD-QoS-Dijkstra algorithm. The experiments were
run on a 1GHz Intel Pentium 3 based system. The algo-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000 1200 1400 1600

R
un

tim
e

(s
ec

s)

Graph size (# vertices)

Runtime(graph size) - Maximum Metric = 1000

Degree 32
Degree 16
Degree 8

Figure 4. Enhanced Runtime(Size)

0

5000

10000

15000

20000

25000

30000

0 200 400 600 800 1000 1200 1400 1600

S
pa

ce
 (#

 e
nt

rie
s

in
 B

_i
 a

nd
 T

)

Graph size (# vertices)

Space(graph size) - Maximum Metric = 1000

Degree 32
Degree 16
Degree 8

Figure 5. Enhanced Space(Size)

rithms were implemented using the C++ Standard Template
Library (STL) and the Boost Graph Library. Each test in-
volved running the algorithm on ten random weight
assignments to ten randomly generated graphs (gen-
erated using the GT-ITM package [21]). For each test
the worst case measurements are graphed. The met-
rics were generated using the “Cost 2” scheme from [17]
where the delay component is randomly selected in the
range 1..MaxMetric, and the cost component is com-
puted as cost = σ(MaxMetric − delay), where σ is a
random integer in the range 1..5; this scheme was cho-
sen as it proved to result in the most challenging com-
putations from a number of different schemes consid-
ered. The QoS routing problem was used for these tests as
it was easiest to generate meaningful random metric as-
signments for. Space overhead was measured in terms of
the maximum number of entries stored in the B∗ struc-
tures.

Tests were run for performance (both runtime and space)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000 1200 1400 1600

R
un

tim
e

(s
ec

s)

Graph size (# vertices)

Runtime(graph size) - Maximum Metric = 1000

Basic QoS Dijkstra (Deg = 32)
Enhanced QoS Dijkstra (Deg = 32)

Traditional Dijkstra (Deg = 32)
Basic QoS Dijkstra (Deg = 8)

Enhanced QoS Dijkstra (Deg = 8)
Traditional Dijkstra (Deg = 8)

Figure 6. Compare Runtime(Size)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

0 200 400 600 800 1000 1200 1400 1600

S
pa

ce
 (#

 e
nt

rie
s

in
 te

m
p

ro
ut

e
st

ru
ct

ur
es

)

Graph size (# vertices)

Space(graph size) - Maximum Metric = 1000

Basic QoS Dijkstra (Deg = 32)
Enhanced QoS Dijkstra (Deg = 32)

Basic QoS Dijkstra (Deg = 8)
Enhanced QoS Dijkstra (Deg = 8)

Figure 7. Compare Space(Size)

as a function of graph size, average degree of the graph, and
the maximum link metric value. Due to space constraints,
only the graphs for size are shown here. Also, since the
maximum metric was shown to have little impact on per-
formance, only results for tests with a maximum metric of
1000 are presented here. Figures 4 and 5 present the re-
sults, showing that, while costs increase with both graph
size and average degree, both the magnitude and rate of
growth are surprisingly tame for what are fundamentally
non-polynomial algorithms. While runtime grows to ap-
proximately 2 seconds for the largest problems, for graphs
smaller than 500 nodes with an average degree of 8 (well be-
yond the scale supportable by current Internet routing pro-
tocols) the runtime is at most a few hundred milliseconds,
and the growth rate is barely beyond linear in this range of
parameters. Similarly, the worst-case space utilization stays
below 30,000 entries (consuming less than 10MB of mem-
ory) with similar growth rates. Figures 6 and 7 compare the
performance of the basic QoS (not presented in this paper),

enhanced QoS, and traditional (single path) Dijkstra algo-
rithms.

5. Hop-by-Hop Policy-Based Routing

The policy-based routing algorithms presented in Sec-
tions 3 and 4 compute multiple routes to the same des-
tination to satisfy the policy requirements of an internet.
Such routes are not supported by current, host-address-
based packet forwarding mechanisms that only allow one
route per destination. The solution to this problem is to use
label-swapping technology (e.g., MPLS [10]) as a gener-
alized forwarding mechanism that replaces IP addresses as
the names for network attachment points in the route bind-
ing function with arbitrary labels which can be defined by
the routing protocol to represent any policy/destination pair
for which a route has been computed.

A significant innovation of the policy-based routing ar-
chitecture presented here is the combination of a table-
driven, hop-by-hop routing model with label-swap forward-
ing mechanisms. Traditionally, label-swap forwarding has
only been seen as an appropriate match with an on-demand,
source-driven routing model. Indeed, to a large extent, the
virtual-circuit nature of these previous solutions has been
attributed to their use of label-swap forwarding.

Contrary to this view, the position taken here is that host
addresses and labels are largely equivalent alternatives for
representing forwarding state, and that the virtual-circuit
nature of prior architectures derives from their use of a
source-driven forwarding model. The primary conceptual
difference between address and label-swap forwarding is
that label-swap forwarding provides a clean separation of
the control and forwarding planes [19] within the network
layer, where address-based forwarding ties the two planes
together. This separation provides what might be called a
topological anonymity of the forwarding plane that is criti-
cal to the implementation of policy-based routes.

Chandranmenon and Varghese [8] present a similar no-
tion, which they call threaded indices, where neighboring
routers share the indexes into their routing tables for spe-
cific routes which are then included in forwarded packets
to allow rapid forwarding table lookups. In addition they
present a modified Bellman-Ford algorithm that exchanges
these labels among neighbors. Our solution generalizes the
threaded index concept to use generic labels (with no di-
rect forwarding table semantics), uses these labels to repre-
sent routing policies computed by the routing protocols, and
defines a family of routing protocols to exchange local la-
bels among neighbors.

As illustrated in Figure 8, label-swap forwarding can be
used in the context of traditional address-based forwarding.
In this example the forwarding table is referenced for both
traffic classification (through the “address prefix” field), and

x

A
dd

re
ss

 P
re

fi
x

L
oc

al
 L

ab
el

N
ex

t H
op

N
ex

t H
op

 L
ab

el

W
Y
Z
X

1
2
3
4 x

y
y
− −

1
2
2

Y
Z
W
X 4

3
2
1 −

z
w
z 2

1
4
−

Z
Y
X
W 1

2
3
4 −

y
x
x 1

2
1
−

3
4
−
1w

−
z
z4

3
2
1W

X
Z
Y

w

y

z

Figure 8. Label-Swapping with Addresses

for label-swap forwarding (through the “local label” field).
The benefit of this mechanism for traffic forwarding is it can
be generalized to handle policy-based forwarding.

For example, label-swap forwarding can be used to im-
plement traffic engineering via the assignment of traffic to
administrative classes which are used to select different
paths for traffic to the same destination depending on the
labeling of links in the network with administrative class
sets. Figure 9 shows the traffic classification and forward-
ing state for a small network with four nodes and the two
administrative classes A and B. The benefits of this archi-
tecture are that it is based on forwarding state that is agnos-
tic to the definition of forwarding classes, allowing the data
forwarding plane to remain simple yet general; and it con-
centrates the path computation functions in the routing pro-
tocol, which is the least time critical, and most flexible com-
ponent of the network layer.

The resulting routing architecture can be seen as analo-
gous to the Reduced Instruction Set Computer (RISC) pro-
cessor architecture in which researchers shifted much of the
intelligence for managing the use of processor resources to
the compilers that were able to bring a higher-level perspec-
tive to the task, thus allowing much more efficient use of the
physical resources, as well as freeing the hardware design-
ers to focus on performance issues of much simpler proces-
sor architectures. Similarly, the communications architec-
ture proposed here requires a shift in intelligence for cus-
tomized (i.e. policy-based) path composition to the routing
protocols and frees the network layer to focus solely on hop-
by-hop forwarding issues, adding degrees of freedom to the
network hardware engineering problem that, hopefully, al-
low for significant advances in the performance and effec-
tiveness of network infrastructure.

In this architecture, the role of the routing protocol takes

x

A
dd

re
ss

 P
re

fi
x

A
dm

in
is

tr
at

iv
e

C
la

ss
es

L
oc

al
 L

ab
el

N
ex

t H
op

N
ex

 H
op

 L
ab

el

W
X
Y
Z
Z B

A
AB
AB
AB 1

2
3
4
5 y

x
y
x
− −

2
3
4
4

W
X
Y
Z
Z A

B
AB
AB
AB 1

2
3
4
5 w

z
−
w
w 1

2
−
6
4

W
W
X
X
Y
Z
Y B

AB
A
B
A
B
A 1

2
3
4
5
6
7 y

−
x
y
x
y
x 1

1
2
2
3
−
3

5
6
3
−
1w

−
w
z
w5

4
3
2
1AB

AB
AB
A
BZ

Z
Y
X
W

AB

y

B

zw

AB A

Figure 9. Label-Swapping with Policies

on new significance. The routing protocols used in most of
today’s computer networks are based on shortest-path al-
gorithms that can be classified as distance-vector or link-
state. Distance-vector protocols work by propagating up-
dates giving the distance to a destination to neighboring
routers whose routing tables may change as a result of the
update. Link-state protocols work by flooding updates de-
scribing the state of links in the network to all routers in
the network. Recently, a hybrid class of protocols, called
link-vector [11], has been defined that works by propagat-
ing link-state updates only to routers whose routing tables
may change as a result of the update.

The enhancement of traditional unicast routing systems
with the policy-based routing technology presented above is
straight-forward. The routing protocol must be enhanced to
carry the additional link metrics required to implement the
desired policies. This requires the use of either a link-state
or link-vector routing protocol that exchanges information
describing link state. Note, however, that for a system de-
pending on on-demand routing computations a link-state,
complete topology protocol is required to ensure an ingress
router has the information it needs to compute an optimal
route. In contrast, hop-by-hop based routing systems can
work with link-vector, partial topology protocols as each
routing process is ensured of learning from its neighbors
of all links composing optimal routes to all destinations in
the internet.

Forwarding state must be enhanced to include local and
next hop label information in addition to the destination and
next hop information existing in traditional forwarding ta-
bles. Traffic classifiers must be placed at the edge of an in-
ternet, where “edge” is defined to be any point from which
traffic can be injected into the internet. Since each router
represents a potential traffic source (for CLI and network

Process

Label−Swap
Forwarding

Traffic
Classifier

Local Processes

Y

N

N

Y

Local? Labelled?

Routing

Figure 10. Traffic Flow in Policy-Enabled
Router

management traffic), this effectively means a traffic clas-
sification component must be present in each router. As
illustrated in Figure 10, the resulting traffic flow require-
ments are that all non-labeled traffic (sourced either from
a router itself, or from a directly connected host or non-
labeling router) must be passed through the traffic classi-
fier first, and all labeled traffic (sourced either from the traf-
fic classifier or a directly connected labeling router) must be
passed to the label-swap forwarding process.

6. Conclusions

This paper presents a family of routing algorithms that
efficiently compute routes in the context of traffic and per-
formance constraints. The enhanced TD-TE-Dijkstra algo-
rithm is the most efficient algorithm available for comput-
ing routes that satisfy traffic engineering requirements, and
Policy-Based-Dijkstra is the first algorithm for computing
routes that simultaneously satisfy traffic engineering and
quality-of-service requirements. A traffic algebra was de-
fined to formalize the notion of traffic constraints, and a
set-based model was identified for efficiently implement-
ing restricted but useful traffic engineering policies. Lastly,
a forwarding architecture was defined that efficiently imple-
ments multiple paths per destination required for hop-by-
hop policy-based routing using label-swap-based forward-
ing.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows
– Theory, Algorithms, and Applications. Prentice Hall, 1993.

[2] D. O. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and
J. McManus. Requirements for Traffic Engineering Over
MPLS. RFC2702, Sept. 1999.

[3] B. Braden, D. Clark, and S. Shenker. Integrated Services
in the Internet Architecture: an Overview. RFC1633, July
1994.

[4] D. Cavendish and M. Gerla. Internet QoS Routing using the
Bellman-Ford Algorithm. In Proceedings IFIP Conference
on High Performance Networking. IFIP, 1998.

[5] V. G. Cerf. The Catenet Model for Internetworking. IEN 48,
July 1978.

[6] V. G. Cerf and E. Cain. The DoD Internet Architecture
Model. Computer Networks, 7:307–318, 1983.

[7] V. G. Cerf and R. E. Kahn. A Protocol for Packet Network In-
tercommunication. IEEE Transactions on Communications,
COM-22(5):637–648, May 1974.

[8] G. P. Chandranmenon and G. Varghese. Trading Packet
Headers for Packet Processing. IEEE ACM Transactions on
Networking, 4(2):141–152, Oct. 1995. 1995.

[9] S. Chen and K. Nahrstedt. An Overview of Quality of
Service Routing for Next-Generation High-Speed Networks:
Problems and Solutions. IEEE Network, pages 64–79, Nov.
1998.

[10] B. Davie and Y. Rekhter. MPLS: Technology and Applica-
tions. Morgan Kaufmann, 2000.

[11] J. Garcia-Luna-Aceves and J. Behrens. Distributed, Scalable
Routing Based on Vectors of Link States. IEEE Journal on
Selected Areas in Communications, Oct. 1995.

[12] M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W.H. Free-
man & Co., 1979.

[13] J. M. Jaffe. Algorithms for Finding Paths with Multiple Con-
straints. Networks, 14(1):95–116, 1984.

[14] W. C. Lee, M. G. Hluchyi, and P. A. Humblet. Routing Sub-
ject to Quality of Service Constraints in Integrated Commu-
nication Networks. IEEE Network, 9(4):46–55, Aug. 1995.

[15] Q. Ma and P. Steenkiste. Quality-of-Service Routing for
Traffic with Performance Guarantees. In Proceedings 4th In-
ternational IFIP Workshop on QoS. IFIP, May 1997.

[16] P. V. Mieghem, H. D. Neve, and F. Kuipers. Hop-by-hop
quality of service routing. Computer Networks, 37:407–423,
Nov. 2001.

[17] S. Siachalou and L. Georgiadis. Efficient QoS Routing. In
Proceedigns of INFOCOM’03. IEEE, Apr. 2003.

[18] J. L. Sobrinho. Algebra and Algorithms for QoS Path
Computation and Hop-by-Hop Routing in the Internet.
IEEE/ACM Transactions on Networking, 10(4):541–550,
Aug. 2002.

[19] G. Swallow. MPLS Advantages for Traffic Engineering.
IEEE Communications Magazine, 37(12):54–57, Dec. 1999.

[20] Z. Wang and J. Crowcroft. Quality-of-Service Routing for
Supporting Multimedia Applications. IEEE Journal on Se-
lected Areas in Communications, pages 1228–1234, Sept.
1996.

[21] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How to
Model an Internetwork. In Proceedings INFOCOM ’96.
IEEE, 1996.

algorithm TD-QoS-Dijkstra
begin

1 Push(<s, s, 0>, Ps);
2 for each {(s, j) ∈ A(s)}

begin
3 Push(<j, s, ωsj >, Qs

j
);

4 Insert(<j, s, ωsj >, Hj);
5 Insert(<j, s, ωsj >, T);

end;
6 while (|T |> 0)

begin
7 <i, p, ω>← Min(T);
8 Push(<i, p, ω>, Pi);
9 DeleteTMin();
10 for each {(i, j) ∈ A(i)}

begin
11 ωi ← ω ⊕ ωij ;
12 AddCandidate(<j, i, ωi >);

end
end

end

function QoS-DeleteTMin()
// Delete minimum entry from T and restore invariants:
// Constraint 1 – only deletes routes (line 9) that are
// v another route.
// Constraint 2 – loop at line 7 ensures new Ti v/
// new Tail(Pi).
begin

1 <i, p, ω>← Min(T);
2 Pop(Qp

i
);

3 if (|Qp

i
|> 0)

4 then IncreaseKey(Head(Qp

i
), Hp

i
)

5 else DeleteMin(Hi);
6 if (|Hi |> 0)

then begin
// Find smallest route in link queues that is not
// v the deleted route.

7 for each {(i, k) ∈ A(i) | (|Qk
i
| > 0) ∧

(Head(Qk
i
).ω v ω)}

begin
8 while ((|Qk

i
|> 0) ∧ (Head(Qk

i
).ω v ω))

9 Pop(Qk
i
);

10 if (|Qk
i
|> 0)

11 then IncreaseKey(Head(Qk
i
), Hk

i
)

12 else Delete(Hk
i
);

end
13 if (|Hi | > 0)

then IncreaseKey(Min(Hi), Ti); return;
end

14 DeleteMin(T);
end

function QoS-AddCandidate(<i, p, ωi >)
// Add new route to appropriate Q and restore invariants:
// Constraint 1 – only drops known comparable routes
// (lines 1, 10, 15, and 24).
// Constraint 2 – ensures Min(Hi) � (and therefore v/)
// all routes in Q∗

i queues.
begin

1 if (ωi v Tail(Pi).ω) then return;
2 if (|Hi |= 0)

then begin
3 Push(<i, p,ωi >, Qp

i
);

4 Insert(<i, p, ωi >, Hi);
5 Insert(<i, p, ωi >, T);
6 return;

end
7 <i, k, ωm >← Min(Hi);
8 if (ωm � ωi)

then
9 if (ωi v ωm)
10 then return;
11 else begin // ((ωi v/ ωm) ∧ (ωm � ωi))
12 if (|Qp

i
| = 0)

13 then Insert(<i, p, ωi >, Hi)
14 else if (ωi v Tail(Qp

i
).ω)

15 then return;
16 Push(<i, p, ωi >, Qp

i
);

end
else // ωi ≺ ωm; since ωi � Min(Hp

i
), it must be

// true that |Qp

i
|= 0.

17 if (ωi w/ ωm)
then begin

18 Push(<i, p, ωi >, Qp

i
);

19 Insert(<i, p, ωi >, Hi);
// Following replaces <i, k, ωm >.

20 DecreaseKey(<i,p, ωi >, Ti);
end

else begin // (ωi w ωm)
21 Push(<i, p, ωi >, Qp

i
);

// Following replaces <i, k, ωm >.
22 DecreaseKey(<i,p, ωi >, Hk

i
);

23 DecreaseKey(<i,p, ωi >, Ti);
24 Pop(Qk

i
);

25 if (|Qk
i
| > 0)

26 then Insert(Head(Qk
i
), Hi);

end
end

Figure 11. Enhanced QoS Dijkstra.

